skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kaempfer, Jenna M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Abstract Crystalline basement rocks of southwestern Montana have been subjected to multiple tectonothermal events since ∼3.3 Ga: the Paleoproterozoic Big Sky/Great Falls orogeny, Mesoproterozoic extension associated with Belt‐Purcell basin formation, Neoproterozoic extension related to Rodinia rifting, and the late Phanerozoic Sevier‐Laramide orogeny. We investigated the long‐term (>1 Ga), low‐temperature (erosion/burial within 10 km of the surface) thermal histories of these tectonic events with zircon and apatite (U‐Th)/He thermochronology. Data were collected across nine sample localities (n = 55 zircon andn = 26 apatite aliquots) in the northern and southern Madison ranges, the Blacktail‐Snowcrest arch, and the Tobacco Root uplift. Our zircon (U‐Th)/He data show negative trends between single aliquot date and effective uranium (a radiation damage proxy), which we interpreted with a thermal history model that considers the damage‐He diffusivity relationship in zircon. Our model results for these basement ranges show substantial cooling from temperatures above 400°C to near surface conditions between 800 and 510 Ma. Subsequent Phanerozoic exhumation culminated by ∼75 Ma. Late Phanerozoic cooling is coincident with along‐strike Sevier belt thin‐skinned thrusting in southeastern Idaho, and older than exhumation in basement‐involved uplifts of the Wyoming Laramide province. Our long‐term, low‐temperature thermal record for these southwestern Montana basement ranges shows that: (a) these basement blocks have experienced multiple episodes of upper crustal exhumation and burial since Archean time, possibly influencing Phanerozoic thrust architecture and (b) the late Phanerozoic thick‐skinned thrusting recorded by these rocks is among the earliest thermochronologic records of Laramide basement‐involved shortening and was concomitant with Sevier belt thin‐skinned thrusting. 
    more » « less